Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 254(Pt 1): 127721, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37913883

RESUMEN

Glycosylation at C3-OH is the favorable modification for pharmaceutical activities and diversity expansion of 20(R)-dammarane ginsenosides. The 3-O-glycosylation, exclusively occurring in 20(R)-PPD ginsenosides, has never been achieved in 20(R)-PPT ginsenosides. Herein, 3-O-glycosylation of 20(R)-PPT enabled by a glycosyltransferase (GT) OsSGT2 was achieved with the combined assistance of AlphaFold 2 and molecular docking. Firstly, we combined AlphaFold2 algorithm and molecular docking to predict interactions between 20(R)-PPT and candidate GTs. A catalytically favorable binding geometry was thus identified in the OsSGT2-20(R)-PPT complex, suggesting OsSGT2 might act on 20(R)-PPT. The enzymatic assays demonstrated that OsSGT2 reacted with varied sugar donors to form 20(R)-PPT 3-O-glycosides, exhibiting donor promiscuity. Additionally, OsSGT2 displayed acceptor promiscuity, catalyzing 3-O-glucosylation of 20(R/S)-PPT, 20(R/S)-PPD and 20(R/S)-Rh1, respectively. Protein engineering on OsSGT2 was thus performed to probe its catalytic mechanism underlying its stereoselectivity. The W207A mutant preferred 20(S)-dammarane aglycons, while F395Q/A396G(QG) displayed a conversion enhancement towards both 20(R/S)-dammarane aglycons. The QG mutant was then used to synthesize 20(R)-PPT 3-O-glucoside, which displayed a moderate angiotensin-converting enzyme inhibitory effect with an IC50 of 27.5 ± 4.7 µM, superior to that of its 20(S)-epimer, with the combined assistance of target fishing and reverse docking. The water solubility of 20(R)-PPT 3-O-glucoside increased as well.


Asunto(s)
Ginsenósidos , Glicosilación , Ginsenósidos/farmacología , Simulación del Acoplamiento Molecular , Damaranos , Glucósidos
2.
J Agric Food Chem ; 70(13): 4076-4085, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35321541

RESUMEN

Quercetin 3-O-N-acetylgalactosamine (Q3GalNAc), a derivative of dietary hyperoside, had never been enzymatically synthesized due to the lack of well-identified N-acetylgalactosamine-transferase (GalNAc-T). Herein, PhUGT, an identified flavonoid 3-O-galactosyltransferase from Petunia hybrida, was demonstrated to display quercetin GalNAc-T activity, transferring a N-acetylgalactosamine (GalNAc) from UDP-N-acetylgalactosamine (UDP-GalNAc) to the 3-OH of quercetin to form Q3GalNAc with a low conversion of 11.7% at 40 °C for 2 h. Protein engineering was thus performed, and the resultant PhUGT variant F368T got an enhanced conversion of 75.5% toward UDP-GalNAc. The enzymatically synthesized Q3GalNAc exhibited a comparable antioxidant activity with other quercetin 3-O-glycosides. Further studies revealed that PhUGT was a donor promiscuous glycosyltransferase (GT), recognizing seven sugar donors. This finding overturned a previous notion that PhUGT exclusively recognized UDP-galactose (UDP-Gal). The reason why PhUGT was mistaken for a UDP-Gal-specific GT was demonstrated to be a shorter reaction time, in which many quercetin 3-O-glycosides, except hyperoside, could not be effectively synthesized. The fact that the microbial cell factory expressing PhUGT could yield an array of Q3Gs further confirmed the donor promiscuity of PhUGT. This study laid a foundation for the scale production of Q3GalNAc and provided a potent biocatalyst capable of glycodiversifying quercetin as well.


Asunto(s)
Acetilgalactosamina , Glicosiltransferasas , Acetilgalactosamina/metabolismo , Antioxidantes , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Ingeniería de Proteínas , Quercetina
3.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34884439

RESUMEN

Glycosylation inactivation is one of the important macrolide resistance mechanisms. The accumulated evidences attributed glycosylation inactivation to a glucosylation modification at the inactivation sites of macrolides. Whether other glycosylation modifications lead to macrolides inactivation is unclear. Herein, we demonstrated that varied glycosylation modifications could cause inactivation of midecamycin, a 16-membered macrolide antibiotic used clinically and agriculturally. Specifically, an actinomycetic glycosyltransferase (GT) OleD was selected for its glycodiversification capacity towards midecamycin. OleD was demonstrated to recognize UDP-D-glucose, UDP-D-xylose, UDP-galactose, UDP-rhamnose and UDP-N-acetylglucosamine to yield corresponding midecamycin 2'-O-glycosides, most of which displayed low yields. Protein engineering of OleD was thus performed to improve its conversions towards sugar donors. Q327F was the most favorable variant with seven times the conversion enhancement towards UDP-N-acetylglucosamine. Likewise, Q327A exhibited 30% conversion enhancement towards UDP-D-xylose. Potent biocatalysts for midecamycin glycosylation were thus obtained through protein engineering. Wild OleD, Q327F and Q327A were used as biocatalysts for scale-up preparation of midecamycin 2'-O-glucopyranoside, midecamycin 2'-O-GlcNAc and midecamycin 2'-O-xylopyranoside. In contrast to midecamycin, these midecamycin 2'-O-glycosides displayed no antimicrobial activities. These evidences suggested that besides glucosylation, other glycosylation patterns also could inactivate midecamycin, providing a new inactivation mechanism for midecamycin resistance. Cumulatively, glycosylation inactivation of midecamycin was independent of the type of attached sugar moieties at its inactivation site.


Asunto(s)
Antibacterianos/química , Glicosiltransferasas/genética , Leucomicinas/química , Antibacterianos/metabolismo , Biocatálisis , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Variación Genética , Glicosilación , Glicosiltransferasas/metabolismo , Leucomicinas/metabolismo , Modelos Moleculares , Ingeniería de Proteínas , Azúcares/química
4.
ACS Synth Biol ; 10(12): 3583-3594, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34846134

RESUMEN

The diversity expansion of testosterone17-O-ß-glycosides (TGs) will increase the probability of screening more active molecules from their acetylated derivatives with anticancer activities. Glycosyltransferases (GTs) responsible for the increased diversity of TGs, however, were seldom documented. Herein, a glycosyltransferase OsSGT2 with testosterone glycodiversification capacity was identified from Ornithogalum saundersiae through transcriptome-wide mining. Specifically, OsSGT2 was demonstrated to be reactive with testosterone and eight donors. OsSGT2 displayed both sugar-aglycon and sugar-sugar GT activities. OsSGT2-catalyzed testosterone glycodiversification could be achieved, generating testosterone monoglycosides and disglycosides with varied percentage conversions. Among the eight donors, the conversion of UDP-Glc was the highest, approaching 90%, while the percentage conversions of UDP-GlcNAc, UDP-Gal, helicin, and UDP-Rha were less than 10%. Protein engineering toward F395 was thus performed to improve the conversion of UDP-GlcNAc. Eight variants displayed increased conversions and the mutant F395C got the highest conversion of 72.11 ± 7.82%, eight times more than that of the wild-type. This study provides a promising alternative for diversity expansion of TGs, also significant insights into the molecular basis for the conversion improvement of sugar donors.


Asunto(s)
Ornithogalum , Glicósidos/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Ornithogalum/genética , Ornithogalum/metabolismo , Ingeniería de Proteínas , Testosterona
5.
J Agric Food Chem ; 69(23): 6623-6635, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34080854

RESUMEN

Acetyl-coenzyme A (acetyl-CoA) is an important donor for acetylation modifications of nutritional supplements. The existing enzymatic methods for acetyl-CoA synthesis suffer from cofactor dependence, donor inaccessibility, and biocatalyst instability, leading to its high cost. Hence, a promising alternative is highly desired. Herein, a maltose O-acetyltransferase (MAT) with cofactor independence had been identified as a stable acetyl-CoA-synthesizing biocatalyst in a screen of the Escherichia coli genome. Under the action of MAT, an anthraquinone medicine containing two acetyl groups, diacerein, was screened as an acetyl donor. Saturation mutagenesis at Glu125 was performed to increase the acetyl-CoA-synthesizing capacity of MAT, while decreasing the accompanying hydrolase activities. A mutant MAT-E125F was thus generated and could convert diacerein and CoA into the highest yield of 3892.70 mg/L acetyl-CoA. Moreover, MAT could synthesize puerarin 6″-O-acetate and other glycosyl esters through acetyl-CoA-dependent acetylation or diacerein-based transesterification reaction. To most of the tested glycosides, the transesterification efficiency was higher than that of acetylation. The mutant MAT-E125V acquired the highest conversion of 94.0% to puerarin 6″-O-acetate through transesterification, while MAT-E125N yielded the highest conversion of 68.5% through acetylation. Taking together, the multifunctional MAT displayed a potent acetyl-CoA- and glycosyl ester-synthesizing capacity using diacerein as an acetyl donor.


Asunto(s)
Escherichia coli , Maltosa , Acetilcoenzima A , Acetiltransferasas/genética , Antraquinonas , Escherichia coli/genética , Ésteres
6.
ACS Omega ; 5(49): 32059-32066, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33344860

RESUMEN

The biocatalysts responsible for the enzymatic synthesis of hydroxygenisteins, derivatives of genistein with multiple activities, usually show regioselective promiscuity, hydroxylating genistein to form a mixture of multiple products, which, in turn, results in a cumbersome separation and purification. Hence, it is highly desired to explore the underlying mechanism regulating the regioselectivity of hydroxylases. M13 is a variant of cytochrome P450 BM3 with oxidant activity toward genistein. Herein, genistein was demonstrated to be hydroxylated by M13 to form a mixture of 3'-hydroxygenistein (3'-OHG) and 8-hydroxygenistein (8-OHG), each giving 4% conversion with a ratio of 1:1. Protein engineering toward M13 was thus performed to improve its regioselectivity. When isoleucine at position 86 was mutated into cysteine, the resultant variant M13I86C displayed improved regioselectivity toward 3'-OHG with an increased conversion of 8.5%. The double mutation M13I86CP18W further boosted the conversion of 3'-OHG to 9.6%, and the ratio of 3'-OHG to 8-OHG increased to 12:1. Conversely, both CoCl2 and glucose 6-phosphate (G6P) could lead to more 8-OHG. When Co2+ reached 37.5 mM, M13I86CP18W could give an 8-OHG conversion of 22.4%. The maximal ratio of 8-OHG to 3'-OHG reached 130 when 62.5 mM Co2+ was included in the reaction mixture. With the increase of G6P from 10 to 40 mM, the conversion of M13I86CP18W to 8-OHG gradually increased to 22.6%, while the conversion to 3'-OHG decreased to 6%. Thus, both intrinsic residues and external reaction conditions can affect the regiospecificity of M13, which laid the foundation for the selection of suitable biocatalysts for the hydroxylation of genistein.

7.
Molecules ; 25(3)2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31979165

RESUMEN

Steroidal glycosides are important sources of innovative drugs. The increased diversification of steroidal glycosides will expand the probability of discovering active molecules. It is an efficient approach to diversify steroidal glycosides by using steroidal glycosyltransferases. OcUGT1, a uridine diphosphate-d-glucose (UDP-Glc)-dependent glycosyltransferase from Ornithogalum caudatum, is a multifunctional enzyme, and its glycodiversification potential towards steroids has never been fully explored. Herein, the glycodiversification capability of OcUGT1 towards 25 steroids through glucosylation and transglucosylation reactions were explored. Firstly, each of 25 compounds was glucosylated with UDP-Glc. Under the action of OcUGT1, five steroids (testosterone, deoxycorticosterone, hydrocortisone, estradiol, and 4-androstenediol) were glucosylated to form corresponding mono-glucosides and biosides. Next, OcUGT1-mediated transglucosylation activity of these compounds with another sugar donor ortho-nitrophenyl-ß-d-glucopyranoside (oNPGlc) was investigated. Results revealed that the same five steroids could be glucosylated to generate mono-glucosides and biosides by OcUGT1 through transglucosylation reactions. These data indicated that OcUGT1-assisted glycodiversification of steroids could be achieved through glucosylation and transglucosylation reactions. These results provide a way to diversify steroidal glycosides, which lays the foundation for the increase of the probability of obtaining active lead compounds.


Asunto(s)
Glucósidos/metabolismo , Glicósidos/metabolismo , Glicosiltransferasas/metabolismo , Esteroides/metabolismo , Glicosilación , Ornithogalum/química
8.
Chin Herb Med ; 12(4): 384-389, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36120167

RESUMEN

Objective: Myricetin 3-O-galactoside is an active compound with pharmaceutical potential. The insufficient supply of this compound becomes a bottleneck in the druggability study of myricetin 3-O-galactoside. Thus, it is necessary to develop a biosynthetic process for myricetin 3-O-galactoside through metabolic engineering. Methods: Two genes OcSUS1 and OcUGE1 encoding sucrose synthase and UDP-glucose 4-epimerase were introduced into BL21(DE3) to reconstruct a UDP-D-galactose (UDP-Gal) biosynthetic pathway in Escherichia coli. The resultant chassis strain was able to produce UDP-Gal. Subsequently, a flavonol 3-O-galactosyltransferase DkFGT gene was transformed into the chassis strain producing UDP-Gal. An artificial pathway for myricetin 3-O-galactoside biosynthesis was thus constructed in E. coli. Results: The obtained engineered strain was demonstrated to be capable of producing myricetin 3-O-galactoside, reaching 29.7 mg/L. Conclusion: Biosynthesis of myricetin 3-O-galactoside through engineered E. coli could be achieved. This result lays the foundation for the large-scale preparation of myricetin 3-O-galactoside.

9.
J Asian Nat Prod Res ; 22(3): 201-216, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31497993

RESUMEN

As the continuous scientific research, seven new 1-oxygenated cholestane glycosides named osaundersiosides 1 A - 1 G were isolated from an EtOH extract of the bulbs of Ornithogalum saundersiae. Their structures were deduced by means of spectroscopic data, chemical evidence and the results of hydrolytic cleavage. The cytotoxicity and anti-inflammatory effects of osaundersiosides 1 A - 1 G were evaluated, but none of them displayed significant activities. [Formula: see text].


Asunto(s)
Antineoplásicos Fitogénicos , Colestanos , Ornithogalum , Glicósidos , Estructura Molecular
10.
Data Brief ; 26: 104391, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31508468

RESUMEN

Herein, the spectral data, including nuclear magnetic resonance spectroscopy (NMR) and mass spectral data, and gas chromatography data of eight cholestane glycosides from Ornithogalum saundersiae Baker (Asparagaceae) bulbs are described. The data are linked with the article entitled "Structure and bioactivity of cholestane glycosides from the bulbs of Ornithogalum saundersiae Baker" (Chen et al., 2019).

11.
Phytochemistry ; 164: 206-214, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31177053

RESUMEN

Eight undescribed cholestane glycosides named osaundersioside A-H, along with three previously known compounds named osaundersioside I-K were isolated from Ornithogalum saundersiae Baker bulbs (Asparagaceae). Their structures were elucidated by extensive spectroscopic analysis and chemical methods. All isolates were evaluated for their cytotoxic activity and inhibitory effects on lipopolysaccharide (LPS)-induced nitric oxide (NO) production. Osaundersioside C was thus determined to exhibit specific cytotoxicity towards MCF-7 cell line with an IC50 value of 0.20 µM, Osaundersioside H exhibited inhibitory effect on NO production in macrophages at the concentration of 10-5 M, with inhibition rate of 56.81%.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Antineoplásicos Fitogénicos/farmacología , Asparagaceae/química , Colestanos/farmacología , Glicósidos/farmacología , Animales , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/aislamiento & purificación , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Proliferación Celular/efectos de los fármacos , Colestanos/química , Colestanos/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Glicósidos/química , Glicósidos/aislamiento & purificación , Humanos , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Células MCF-7 , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Estructura Molecular , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Corteza de la Planta/química , Raíces de Plantas/química , Relación Estructura-Actividad
12.
BMC Plant Biol ; 19(1): 195, 2019 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-31088366

RESUMEN

BACKGROUND: Flavonol synthase (FLS) is the key enzyme responsible for the biosynthesis of flavonols, the most abundant flavonoids, which have diverse pharmaceutical effects. Flavonol synthase has been previously found in other species, but not yet in Ornithogalum caudatum. RESULTS: The transcriptome-wide mining and functional characterisation of a flavonol synthase gene family from O. caudatum were reported. Specifically, a small FLS gene family harbouring two members, OcFLS1 and OcFLS2, was isolated from O. caudatum based on transcriptome-wide mining. Phylogenetic analysis suggested that the two proteins showed the closest relationship with FLS proteins. In vitro enzymatic assays indicated OcFLS1 and OcFLS2 were flavonol synthases, catalysing the conversion of dihydroflavonols to flavonols in an iron-dependent fashion. In addition, the two proteins were found to display flavanone 3ß-hydroxylase (F3H) activity, hydroxylating flavanones to form dihydroflavonols. Unlike single F3H enzymes, the F3H activity of OcFLS1 and OcFLS2 did not absolutely require iron. However, the presence of sufficient Fe2+ was demonstrated to be conducive to successive catalysis of flavanones to flavonols. The qRT-PCR analysis demonstrated that both genes were expressed in the leaves, bulbs, and flowers, with particularly high expression in the leaves. Moreover, their expression was regulated by developmental and environmental conditions. CONCLUSIONS: OcFLS1 and OcFLS2 from O. caudatum were demonstrated to be flavonol synthases with iron-independent flavanone 3-hydroxylase activity.


Asunto(s)
Oxigenasas de Función Mixta/metabolismo , Ornithogalum/enzimología , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Electroforesis en Gel de Poliacrilamida , Flavonoles/metabolismo , Perfilación de la Expresión Génica , Genes de Plantas/genética , Genes de Plantas/fisiología , Hierro/metabolismo , Redes y Vías Metabólicas , Ornithogalum/genética , Ornithogalum/metabolismo , Análisis de Secuencia de ADN , Transcriptoma
13.
Acta Pharm Sin B ; 8(6): 981-994, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30505666

RESUMEN

Herein we describe the discovery and functional characterization of a steroidal glycosyltransferase (SGT) from Ornithogalum saundersiae and a steroidal glycoside acyltransferase (SGA) from Escherichia coli and their application in the biosynthesis of acylated steroidal glycosides (ASGs). Initially, an SGT gene, designated as OsSGT1, was isolated from O. saundersiae. OsSGT1-containing cell free extract was then used as the biocatalyst to react with 49 structurally diverse drug-like compounds. The recombinant OsSGT1 was shown to be active against both 3ß- and 17ß-hydroxyl steroids. Unexpectedly, in an effort to identify OsSGT1, we found the bacteria lacA gene in lac operon actually encoded an SGA, specifically catalyzing the acetylations of sugar moieties of steroid 17ß-glucosides. Finally, a novel enzymatic two-step synthesis of two ASGs, acetylated testosterone-17-O-ß-glucosides (AT-17ß-Gs) and acetylated estradiol-17-O-ß-glucosides (AE-17ß-Gs), from the abundantly available free steroids using OsSGT1 and EcSGA1 as the biocatalysts was developed. The two-step process is characterized by EcSGA1-catalyzed regioselective acylations of all hydroxyl groups on the sugar unit of unprotected steroidal glycosides (SGs) in the late stage, thereby significantly streamlining the synthetic route towards ASGs and thus forming four monoacylates. The improved cytotoxic activities of 3'-acetylated testosterone17-O-ß-glucoside towards seven human tumor cell lines were thus observable.

14.
Genes (Basel) ; 9(7)2018 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-29958449

RESUMEN

Aurone glycosides display a variety of biological activities. However, reports about glycosyltransferases (GTs) responsible for aurones glycosylation are limited. Here, the transcriptome-wide discovery and identification of an aurone glycosyltransferase with glycosidase activity is reported. Specifically, a complementary DNA (cDNA), designated as OsUGT1, was isolated from the plant Ornithogalum saundersiae based on transcriptome mining. Conserved domain (CD)-search speculated OsUGT1 as a flavonoid GT. Phylogenetically, OsUGT1 is clustered as the same phylogenetic group with a putative 5,6-dihydroxyindoline-2-carboxylic acid (cyclo-DOPA) 5-O-glucosyltransferase, suggesting OsUGT1 may be an aurone glycosyltransferase. The purified OsUGT1 was therefore used as a biocatalyst to incubate with the representative aurone sulfuretin. In vitro enzymatic analyses showed that OsUGT1 was able to catalyze sulfuretin to form corresponding monoglycosides, suggesting OsUGT1 was indeed an aurone glycosyltransferase. OsUGT1 was observed to be a flavonoid GT, specific for flavonoid substrates. Moreover, OsUGT1 was demonstrated to display transglucosylation activity, transferring glucosyl group to sulfuretin via o-Nitrophenyl-β-d-glucopyranoside (oNP-β-Glc)-dependent fashion. In addition, OsUGT1-catalyzed hydrolysis was observed. This multifunctionality of OcUGT1 will broaden the application of OcUGT1 in glycosylation of aurones and other flavonoids.

15.
J Asian Nat Prod Res ; 20(7): 662-674, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29852779

RESUMEN

Herein, a flavonoid glycosyltransferase (GT) OcUGT1 was determined to be able to attack C-8 position of 7,8-dihydroxyflavone (7,8-DHF) via both glycosylation and transglycosylation reactions. OcUGT1-catalyzed glycosylation of 7,8-DHF resulted in the formation of two monoglycosides 7-O-ß-D-glucosyl-8-hydroxyflavone (1a), 7-hydroxy-8-O-ß-D-glucosylflavone (1b), as well as one diglycoside 7,8-di-O-ß-D-glucosylflavone (1c). Under the action of OcUGT1, inter-molecular trans-glycosylations from aryl ß-glycosides to 7,8-DHF to form monoglycosides 1a and 1b were observable.


Asunto(s)
Flavonas/biosíntesis , Glicosiltransferasas/metabolismo , Catálisis , Escherichia coli/enzimología , Escherichia coli/genética , Glicósidos , Glicosilación , Cinética , Espectroscopía de Resonancia Magnética , Estructura Molecular
16.
Sci Rep ; 8(1): 5886, 2018 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-29651040

RESUMEN

Glycosyltransferases (GTs) are bidirectional biocatalysts catalyzing the glycosylation of diverse molecules. However, the extensive applications of GTs in glycosides formation are limited due to their requirements of expensive nucleotide diphosphate (NDP)-sugars or NDP as the substrates. Here, in an effort to characterize flexible GTs for glycodiversification of natural products, we isolated a cDNA, designated as OcUGT1 from Ornithogalum caudatum, which encoded a flavonoid GT that was able to catalyze the trans-glycosylation reactions, allowing the formation of glycosides without the additions of NDP-sugars or NDP. In addition, OcUGT1 was observed to exhibit additional five types of functions, including classical sugar transfer reaction and three reversible reactions namely NDP-sugar synthesis, sugars exchange and aglycons exchange reactions, as well as enzymatic hydrolysis reaction, suggesting OcUGT1 displays both glycosyltransferase and glycosidase activities. Expression profiles revealed that the expression of OcUGT1 was development-dependent and affected by environmental factors. The unusual multifunctionality of OcUGT1 broadens the applicability of OcUGT1, thereby generating diverse carbohydrate-containing structures.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas/aislamiento & purificación , Glicósido Hidrolasas/aislamiento & purificación , Ornithogalum/enzimología , Proteínas de Plantas/aislamiento & purificación , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Biocatálisis , Clonación Molecular , ADN Complementario/genética , ADN Complementario/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Flavonoides/metabolismo , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Glicosilación , Cinética , Ornithogalum/genética , Ornithogalum/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
17.
Acta Pharm Sin B ; 7(4): 510-516, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28752038

RESUMEN

The search of new substrates with pharmaceutical and industrial potential for biocatalysts including cytochrome P450 enzymes is always challenging. Cytochrome P450 BM3 mutant 139-3, a versatile biocatalyst, exhibited hydroxylation activities towards fatty acids and alkanes. However, there were limited reports about its hydroxylation activity towards steroids. Herein, an Escherichia coli-based whole-cell extract containing the recombinant 139-3 protein was used as the biocatalyst to screen 13 steroids. Results revealed that 139-3 was able to specifically hydroxylate androstenedione (1) at 1α-position, generating a hydroxylated steroid 1α-OH-androstenedione (1a). To investigate whether C-1α hydroxylation catalyzed by BM3 mutant 139-3 could be industrially used, an optimization of catalyzing conditions was performed. Accordingly, the BM3 mutant 139-3 enzyme was observed to display maximum activity at 37 °C, under pH 7.0 for 4 h, with 37% transformation rate. Moreover, four 139-3 variants were generated by random mutagenesis with the aim of improving its activity and expanding substrate scope. Surprisingly, these mutants, sharing a common mutated site R379S, lost their activities towards androstenedione (1). These data clearly indicated that arginine residue located at site 379 played key role in the hydroxylation activities of 139-3. Overall, these new findings broadened the substrate scope of 139-3 enzyme, thereby expanding its potential applications as a biocatalyst on steroids hydroxylation in pharmaceutical industry.

18.
Protein Expr Purif ; 130: 63-72, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27725246

RESUMEN

As the first step of ongoing efforts to investigate the genes responsible for the biosynthesis of steroidal saponins in the medicinal plant Ornithogalum caudatum, this investigation reported the cDNA isolation, prokaryotic expression and functional characterization of squalene synthase (SQS) gene from O. caudatum for the first time. Specifically, two unigenes showing high sequence identity to SQS were retrieved from RNA-Taq data, and then a full-length OcSQS1 corresponding to the two unigenes was isolated from O. caudatum genome by a nested PCR assay. The open reading frame of OcSQS1 was 1230 bp and encoded a polypeptide of 409 aa. OcSQS1 was predicted to be a membrane-bound protein with at least four conserved motifs associated with binding, regulatory and catalytic activities of OcSQS1 and two transmembrane domains. Next, many attempts to generate soluble OcSQS1 in heterologous Escherichia coli were made, including optimization of expression conditions, application of varied expression plasmids with different tags, secretory peptides and molecular chaperones, and truncated mutation of OcSQS1. Finally, the successful availability of a soluble, truncated OcSQS1 mutant was achieved by combinational use of the utensils from the vast genetic toolbook. Moreover, this truncated OcSQS1 mutant retained the folding capability as well as its catalytic activity, converting FPP to form squalene. Importantly, the present research tentatively verified the involvement of the second transmembrane domain in the proper folding of the recombinant OcSQS1 protein.


Asunto(s)
Clonación Molecular , ADN Complementario , Escherichia coli/metabolismo , Farnesil Difosfato Farnesil Transferasa , Ornithogalum/genética , Proteínas de Plantas , ADN Complementario/genética , ADN Complementario/aislamiento & purificación , Escherichia coli/genética , Farnesil Difosfato Farnesil Transferasa/biosíntesis , Farnesil Difosfato Farnesil Transferasa/química , Farnesil Difosfato Farnesil Transferasa/genética , Farnesil Difosfato Farnesil Transferasa/aislamiento & purificación , Ornithogalum/enzimología , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
19.
Plant Physiol Biochem ; 109: 536-548, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27835851

RESUMEN

UDP-L-rhamnose (UDP-Rha) is an important sugar donor for the synthesis of rhamnose-containing compounds in plants. However, only a few enzymes and their encoding genes involved in UDP-Rha biosynthesis are available in plants. Here, two genes encoding rhamnose synthase (RhS) and bi-functional UDP-4-keto-6-deoxy-D-glucose (UDP-4K6DG) 3, 5-epimerase/UDP-4-keto-L-rhamnose (UDP-4KR) 4-keto-reductase (UER) were isolated from Ornithogalum caudatum based on the RNA-Seq data. The OcRhS1 gene has an ORF (open reading frame) of 2019 bp encoding a tri-functional RhS enzyme. In vitro enzymatic assays revealed OcRhS1 can really convert UDP-D-glucose (UDP-Glc) into UDP-Rha via three consecutive reactions. Biochemical evidences indicated that the recombinant OcRhS1 was active in the pH range of 5-11 and over the temperature range of 0-60 °C. The Km value of OcRhS1 for UDP-Glc was determined to be 1.52 × 10-4 M. OcRhS1 is a multi-domain protein with two sets of cofactor-binding motifs. The cofactors dependent properties of OcRhS1 were thus characterized in this research. Moreover, the N-terminal portion of OcRhS1 (OcRhS1-N) was observed to metabolize UDP-Glc to form intermediate UDP-4K6DG. OcUER1 contains an ORF of 906 bp encoding a polypeptide of 301 aa. OcUER1 shared high similarity with the carboxy-terminal domain of OcRhS1 (OcRhS1-C), suggesting its intrinsic ability of converting UDP-4K6DG into UDP-Rha. It was thus reasonably inferred that UDP-Glc could be bio-transformed into UDP-Rha under the collaborating action of OcRhS1-N and OcUER1. The subsequently biochemical assay verified this notion. Importantly, expression profiles of OcRhS1 and OcUER1 revealed their possible involvement in the biosynthesis of rhamnose-containing polysaccharides in O. caudatum.


Asunto(s)
Ornithogalum/genética , Ornithogalum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ramnosa/análogos & derivados , Azúcares de Uridina Difosfato/biosíntesis , Secuencia de Aminoácidos , Vías Biosintéticas , Deshidrogenasas de Carbohidratos/química , Deshidrogenasas de Carbohidratos/genética , Deshidrogenasas de Carbohidratos/metabolismo , Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/genética , Carbohidrato Epimerasas/metabolismo , Genes de Plantas , Cinética , Filogenia , Proteínas de Plantas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ramnosa/biosíntesis , Ramnosa/genética , Homología de Secuencia de Aminoácido , Azúcares de Uridina Difosfato/genética
20.
Molecules ; 21(11)2016 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-27834878

RESUMEN

d-Galacturonic acid (GalA) is an important component of GalA-containing polysaccharides in Ornithogalum caudatum. The incorporation of GalA into these polysaccharides from UDP-d-galacturonic acid (UDP-GalA) was reasonably known. However, the cDNAs involved in the biosynthesis of UDP-GalA were still unknown. In the present investigation, one candidate UDP-d-glucuronic acid 4-epimerase (UGlcAE) family with three members was isolated from O. caudatum based on RNA-Seq data. Bioinformatics analyses indicated all of the three isoforms, designated as OcUGlcAE1~3, were members of short-chain dehydrogenases/reductases (SDRs) and shared two conserved motifs. The three full-length cDNAs were then transformed to Pichia pastoris GS115 for heterologous expression. Data revealed both the supernatant and microsomal fractions from the recombinant P. pastoris expressing OcUGlcAE3 can interconvert UDP-GalA and UDP-d-glucuronic acid (UDP-GlcA), while the other two OcUGlcAEs had no activity on UDP-GlcA and UDP-GalA. Furthermore, expression analyses of the three epimerases in varied tissues of O. caudatum were performed by real-time quantitative PCR (RT-qPCR). Results indicated OcUGlcAE3, together with the other two OcUGlcAE-like genes, was root-specific, displaying highest expression in roots. OcUGlcAE3 was UDP-d-glucuronic acid 4-epimerase and thus deemed to be involved in the biosynthesis of root polysaccharides. Moreover, OcUGlcAE3 was proposed to be environmentally induced.


Asunto(s)
Carbohidrato Epimerasas , ADN Complementario , Ornithogalum , Proteínas de Plantas , Raíces de Plantas , Carbohidrato Epimerasas/biosíntesis , Carbohidrato Epimerasas/genética , Expresión Génica , Ornithogalum/enzimología , Ornithogalum/genética , Pichia , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Azúcares de Uridina Difosfato/genética , Azúcares de Uridina Difosfato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA